Counting points of fixed degree and given height over function fields

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Points of Fixed Degree and given Height over Function Fields

Let k be a finite algebraic extension of the field of rational functions in one indeterminate over a finite field and let k denote an algebraic closure of k. We count points in projective space Pn−1(k) with given height and generating an extension of fixed degree d over k. If n > 2d + 3 we derive an asymptotic estimate for the number of such points as the height tends to infinity. As an applica...

متن کامل

Counting Points of Fixed Degree and Bounded Height

We consider the set of points in projective n-space that generate an extension of degree e over given number field k, and deduce an asymptotic formula for the number of such points of absolute height at most X, as X tends to infinity. We deduce a similar such formula with instead of the absolute height, a so-called adelic-Lipschitz height.

متن کامل

Counting points of fixed degree and bounded height on linear varieties

We count points of fixed degree and bounded height on a linear projective variety defined over a number field k. If the dimension of the variety is large enough compared to the degree we derive asymptotic estimates as the height tends to infinity. This generalizes results of Thunder, Christensen and Gubler and special cases of results of Schmidt and Gao.

متن کامل

Counting rational points on ruled varieties over function fields

Let K be the function field of an algebraic curve C defined over a finite field Fq. Let V ⊂ PK be a projective variety which is a union of lines. We prove a general result computing the number of rational points of bounded height on V/K. We first compute the number of rational points on a general line defined over K, and then sum over the lines covering V . Mathematics Subject Classification: 1...

متن کامل

Integral Points of Fixed Degree and Bounded Height

By Northcott’s Theorem there are only finitely many algebraic points in affine n-space of fixed degree e over a given number field and of height at most X. Finding the asymptotics for these cardinalities as X becomes large is a long standing problem which is solved only for e = 1 by Schanuel, for n = 1 by Masser and Vaaler, and for n “large enough” by Schmidt, Gao, and the author. In this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2012

ISSN: 0024-6093

DOI: 10.1112/blms/bds087